Ion Exchange Membranes for Electrodialysis: A Comprehensive Review of Recent Advances

Article · December 2014
DOI: 10.6000/1929-6037.2014.03.04.2

CITATIONS
0
READS
784

5 authors, including:

Chenxiao Jiang
The university of Hongkong
40 PUBLICATIONS 488 CITATIONS
SEE PROFILE

Yan Li
Sichuan University
598 PUBLICATIONS 11,719 CITATIONS
SEE PROFILE

Yaoming Wang
University of Science and Technology of China
69 PUBLICATIONS 987 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

- ion exchange membrane View project
- Alzheimer’s disease View project

All content following this page was uploaded by Chenxiao Jiang on 23 December 2018.

The user has requested enhancement of the downloaded file.
Ion Exchange Membranes for Electrodialysis: A Comprehensive Review of Recent Advances

Chenxiao Jiang*, Md. Masem Hossain#, Yan Li, Yaoming Wang and Tongwen Xu*

CAS Key Laboratory of Soft Matter Chemistry, Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, P.R. China

Abstract: Electrodialysis related processes are effectively applied in desalination of sea and brackish water, waste water treatment, chemical process industry, and food and pharmaceutical industry. In this process, fundamental component is the ion exchange membrane (IEM), which allows the selective transport of ions. The evolvement of an IEM not only makes the process cleaner and energy-efficient but also recovers useful effluents that are now going to wastes. However ion-exchange membranes with better selectivity, less electrical resistance, good chemical, mechanical and thermal stability are appropriate for these processes. For the development of new IEMs, a lot of tactics have been applied in the last two decades. The intention of this paper is to briefly review synthetic aspects in the development of new ion-exchange membranes and their applications for electrodialysis related processes.

Keywords: Electrodialysis, ion exchange membrane, anion exchange membrane, cation exchange membrane, bipolar membrane.

1. INTRODUCTION

Electrodialysis (ED) is an electro-driven separation process that is used for the highly efficient desalination of brackish water, the production of ultra-pure water, water softening and the removal of other charged impurities from water streams including waste water treatment to recover some valuable elements in chemical industry and production of many important chemicals. The efficiency of this process depends on the use of ion exchange membranes (IEMs) to remove unwanted charged particles from the feed stream. For ED process, the IEMs are expected to possess high permselectivity, less electrical resistance, and good chemical, thermal and mechanical stabilities. Although many developments in IEMs have come from researches for the chloro-alkali industry and fuel cells [1, 2], the development of new materials and further fundamental research for the ED process are not numerous.

In fact, ion exchange membranes based electrodialysis rapidly became an industrial process for demineralizing and concentrating electrolyte solutions with the development of stable, highly selective IEM of low electric resistance in 1950 by Juda and McRae of Ionics Inc. [3] and Winger et al. at Rohm in 1953 [4]. Since then, a lot of efforts have been made by many research groups to prepare membranes with desirable properties for different applications, including ED. For example, in 1960s, first salt production from sea water was realized by Asahi Co. with monovalent ion permselective membranes [5]; in 1969, the invention of electrodialysisis reversal (EDR) realized long-term run without salt precipitation or deposition on both membranes and electrodes [6]; in 1970s, a chemically stable cation exchange membrane based on sulfonated polytetra-fluorethylene was firstly developed by Dupont as Nafion® [7]; simultaneously, a composition of cation exchange layer and an anion exchange layer into a bipolar membrane in 1976 by Chlanda et al. [8] brings many novelties in electrodialysis applications today [9].

Therefore, to awake researcher’s interest in this field and also to understand the present states of ED research, this review provides a comprehensive overview of IEMs covering the fundamentals as well as the recent development of IEMs in this field, and development of novel ED processes. However, this paper is not intended as a review of the literature in these areas. Instead, it is focused on recent progress in synthesis and some new important applications of major homogeneous ion exchange membranes, hybrid ion exchange membranes, as well as bipolar membranes to illustrate the improvement in ED.

2. PREPARATION OF ION-EXCHANGE MEMBRANES

This section arranges for an overview of the progress in the development of ion exchange membranes for ED. For different applications, various kinds of IEMs have been developed. Some commercially available ion-exchange membranes,
Table 1: Main Properties of some Commercially Available Ion Exchange Membranes

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Water content (%)</th>
<th>Thickness (μm)</th>
<th>IEC (meq g⁻¹)</th>
<th>Resistance (Ωcm²)</th>
<th>Selectivity (%)</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneous membranes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ionics Inc., USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM</td>
<td>CR61-CMP</td>
<td>-</td>
<td>580–700</td>
<td>2.2–2.5</td>
<td>11.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CR67-HMR</td>
<td>-</td>
<td>530–650</td>
<td>2.1–2.45</td>
<td>7.0–11.0</td>
<td>-</td>
</tr>
<tr>
<td>AEM</td>
<td>AR103QDP</td>
<td>-</td>
<td>560–690</td>
<td>1.95–2.20</td>
<td>14.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AR204SZRA</td>
<td>-</td>
<td>480–660</td>
<td>2.3–2.7</td>
<td>6.2–9.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AR112-B</td>
<td>-</td>
<td>480–660</td>
<td>1.3–1.8</td>
<td>20–28</td>
<td>-</td>
</tr>
<tr>
<td>ChemJOY, China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM</td>
<td>CJEDMC-1</td>
<td>20–30</td>
<td>140–160</td>
<td>0.8–1.0</td>
<td>1.5–3.0</td>
<td>>92</td>
</tr>
<tr>
<td></td>
<td>CJEDMC-2</td>
<td>30–40</td>
<td>110–130</td>
<td>1.4–1.6</td>
<td>0.5–1.5</td>
<td>>94</td>
</tr>
<tr>
<td>AEM</td>
<td>CJEDMA-1</td>
<td>20–30</td>
<td>140–160</td>
<td>0.8–1.0</td>
<td>2.5–3.5</td>
<td>>94</td>
</tr>
<tr>
<td></td>
<td>CJEDMA-2</td>
<td>20–30</td>
<td>110–130</td>
<td>1.1–1.3</td>
<td>2.0–3.0</td>
<td>>96</td>
</tr>
<tr>
<td>BPM</td>
<td>CJEDBM</td>
<td>50</td>
<td>170–190</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tingrun, China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM</td>
<td>JCM-II-05</td>
<td>35–43</td>
<td>160–230</td>
<td>2.0–2.9</td>
<td>1–3</td>
<td>95–99</td>
</tr>
<tr>
<td>AEM</td>
<td>JAM-II-05</td>
<td>24–30</td>
<td>160–230</td>
<td>1.8–2.2</td>
<td>4–8</td>
<td>90–95</td>
</tr>
<tr>
<td>BPM</td>
<td>BPM-I</td>
<td>35–40</td>
<td>160–230</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Naosepta, ASTOM, Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM</td>
<td>PS/DVB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMX</td>
<td>0–10</td>
<td>140–200</td>
<td>≥0.40</td>
<td>1.8–3.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CM-1</td>
<td>-</td>
<td>120–170</td>
<td>≥0.10</td>
<td>0.8–2.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CM-2</td>
<td>-</td>
<td>110–160</td>
<td>≥0.15</td>
<td>2.0–4.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CMS</td>
<td>-</td>
<td>120–170</td>
<td>≥0.10</td>
<td>1.5–3.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CM3</td>
<td>0–14</td>
<td>180–250</td>
<td>≥0.40</td>
<td>2.5–6.0</td>
<td>-</td>
</tr>
<tr>
<td>AEM</td>
<td>PS/DVB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMX</td>
<td>0–8</td>
<td>120–180</td>
<td>≥0.30</td>
<td>2.0–3.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AM-1</td>
<td>-</td>
<td>110–160</td>
<td>≥0.20</td>
<td>1.2–2.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AM-3</td>
<td>-</td>
<td>100–150</td>
<td>≥0.20</td>
<td>2.8–4.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ACM</td>
<td>0–8</td>
<td>100–130</td>
<td>≥0.15</td>
<td>2.0–4.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ACS</td>
<td>0–8</td>
<td>120–200</td>
<td>≥0.15</td>
<td>3.0–6.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AFN</td>
<td>0–8</td>
<td>130–180</td>
<td>≥0.25</td>
<td>0.3–1.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AFX</td>
<td>0–8</td>
<td>140–190</td>
<td>≥0.25</td>
<td>0.7–1.5</td>
<td>-</td>
</tr>
<tr>
<td>BPM</td>
<td>BP-1E</td>
<td>-</td>
<td>220</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1. Continued.

<table>
<thead>
<tr>
<th>Membrane Type</th>
<th>Membrane</th>
<th>Water Content (%)</th>
<th>Thickness (μm)</th>
<th>IEC (meqiv g⁻¹)</th>
<th>Resistance (Ωcm⁻¹)</th>
<th>Selectivity (%)</th>
<th>Applications</th>
</tr>
</thead>
</table>

CEM General purpose membranes
- CMV - 120 - 3.0 >96
- CMD - 380 - 17 >94
- CSO - 100 - 2.3 >97
- CMF - 440 - 2.5 >95

AEM General purpose membranes
- AMV - 120 - 2.8 >96
- AMT - 200 - 6.0 >96

AEM Special purpose membranes
- AAV - 120 - 6.0 >95
- ASV - 120 - 3.7 >97
- AHO - 300 - 20 >95

FuMA-Tech GmbH, Germany
- FKE None 1-14 10~50 1.4~1.5 0.3~0.9 98~99
- FKB PEEK 1-14 100~130 1.0~1.1 4~7 94~97
- FKL PEEK 1-14 100~130 1.0~1.2 6~10 98~99
- F-10180 PTFE 1-14 150~180 1.0 <0.5 >99
- CMF-7000 Polypropylene 1-10 450 1.6 25~30 >97
- FKD PEEK 1-14 75~90 1.2~1.4 1.0~1.2 >94
- FKS Polyester 1-9 75~130 0.8~1.2 2.0~4.5 98~99
 - None 1-14 10~50 1.3~1.4 0.9~1.9 98~99
- FAS None 1-14 10~50 1.6~1.8 0.4~0.8 94~97
 - Polyester 1-9 75~130 1.0~1.4 2.0~3.0 92~97
- FAB PEEK 1-14 100~130 1.0~1.1 4~7 94~97
- FAP PEEK/PTFE 1-11 130~160 1.1~1.3 1.1~1.3 >91
- FAA-3 PEEK 1-14 100~130 1.4~1.6 1.9~2.5 94~96
 - None 1-14 10~50 1.9~2.1 0.2~0.7 92~95
- FAD Polyester 1-9 75~90 1.5~1.7 0.4~0.8 >85

BPM
- FBM PEEK 1-14 180-200 - - -

Heterogeneous membranes

Qianqiu, China

CMI-7000 Polypropylene 1-10 450 1.6 25~30 >97

Shchekinoazot, Russia

MK-40 52~58 470~490 1.6~1.8 7.4~7.7 -
- MK-40/NF 61~67 490~510 1.6~1.8 8.0~8.6 -
- MA-40 45~49 450~490 3.12~3.28 7.2~7.8 -
- MA-40M 45~49 450~490 3.12~3.28 5.2~5.8 -

*Ion exchange capacity was determined for wet membranes in the sodium form (cation exchange membranes) or in the chloride form (anion exchange membranes); The measurement conditions to determine the resistance (area resistance) varied with companies: AGC Engineering Co., Ltd 0.5M NaCl at 25 °C; FuMA-Tech, GmbH 0.6M NaCl at 25 °C; Astom Co., 0.5N NaCl at 25 °C; Tianwei Co., 0.1N NaCl at 17 °C.
manufacturers and their properties are shown in Table 1 [10, 11].

2.1. Homogeneous Ion Exchange Membrane

In order to supply suitable membranes for ED application and to expand the opportunity to new potential applications, the search for new materials for ion-exchange membranes has kept on the rise. To prepare homogeneous IEMs, various tactics are available to introduce ionic groups. These tactics can be divided into three classes based on the starting materials.

1) Polymerization or polycondensation of monomers; at least one of them must comprise a moiety that either is or can be made cationic or anionic groups, respectively. Then the charged polymers undergo film processing to form membranes.

2) Charge moieties insert ion to polymer chains followed by the formation of membranes.

3) Introduction of functional charge groups on the already film-formed membranes either directly by grafting of a functional monomer or indirectly by grafting nonfunctional monomer followed by functionalization reactions.

2.1.1. Direct Polymerization from Monomer Units

The direct synthesis of polymer from monomer units gives excellent opportunity to control the functional groups quantity and distribution along the polymer backbones. Moreover, this process helps to regulate both microstructure and properties of the ion-exchange membranes. IEMs via direct polymerization of monomers, in which, at least one of them must contain a moiety that is or can be made anionic or cationic, respectively, have been successfully reported [58-60].

If such a membrane is prepared from monomer, styrene and divinyl benzene are most frequently used starting material for a conventional hydrocarbon type ion exchange membrane for industrial uses, from which cation exchange membranes (CEMs) are readily obtained through sulfonation of the aromatic ring with chlorosulfonic acid whereas anion exchange membranes (AEMs) are prepared through halomethylation, especially chloromethylation, followed by quaternization. Usually chloromethyl ether (CME), a carcinogenic and hazardous chemical, was used for chloromethylation reaction and its use has been restricted since 1970s.

As shown in Figure 1, alternative methods have been proposed to minimize the hazards involved in the preparation of AEMs such as polymerization of halomethyl substituted aromatic monomers (i.e. chloromethylstyrene), followed by quaternization with alkylamine [58], and polymerization of p-methylstyrene and subjected to benzylic bromination followed by amination to obtain quaternary ammonium sites [59].

As electronic properties of conducting polymers (CP) are useful for ED application, they are materials

![Figure 1: Safer route for preparing anion exchange membrane](image)

Copyright (2014), Modified with permission from Elsevier.
with an enormous projection. Among them, polythiophene derivatives are very important, since their serious problems of solubility and processability have been solved recently. Poly(2-thiophen-3-yl-malonic acid), a new CP bearing two carboxylate units per thiophene ring, has been derived from the alkaline hydrolysis of the poly(2-thiophene-3-yl-malonic acid dimethyl ester), which was obtained by chemical oxidative coupling polymerization [60].

2.1.2. Direct Modification of Polymer Backbone

For soluble polymers, polyarylene polymers containing aromatic pendant groups on polymer backbones such as poly aryl sulfone, poly aryl ketone, and polyphenylene oxides, the corresponding membranes can be obtained either by introducing anionic or cationic moieties, followed by the dissolving of polymer and casting it into a film [61-74]. For the preparation of IEMs, these polymers are attractive as the polymer matrix due to several reasons: (1) their high mechanical and thermal stability, (2) good processability, (3) relatively high glass transition temperature (T_g), (4) low cost, and (5) the ability to chemically modify the polymer backbone via the electrophilic substitution at their aromatic skeletons [11]. However, for membrane preparation with these soluble polymers, its chemical stability is not so good and often needs post treatment, such as crosslinking [65, 66].

Poly(aryl sulfone)

Poly(arylsulfone)s such as polyether sulfones (PES), have strong mechanical, thermal and chemical stability and have been successfully used as ion exchange membranes in electro-chemical applications [61-66]. For use as a cation exchange membrane, PES must be functionalized to incorporate fixed negatively charged groups. For the functionalization of PES, sulfonation is commonly used over other forms such as carboxylation or phosphonation, as the process is comparatively simple and yields membranes show good ion transport properties. There are different sulfonation methods to add sulfonic acid groups to PES chain in heterogeneous or homogeneous media with sulfuric or chlorosulfonic acid. However, if chlorosulfonic acid is used as sulfonating agent, sometimes PES chains cleave or undergo branching reactions by the conversion of the intermediate sulfonic acid group into a partially branched or cross-linked sulfone unit [75]. Additionally, the amount of these side reactions for the sulfonation of PES mostly depends on the reaction conditions and polarity of the solvents used [61].

Also, it is difficult to control the degree of sulfonation and chemical structure of a sulfonated polymer if the polymer is directly sulfonated with chlorosulfonic acid or concentrated sulfuric acid. In the course of the sulfonation process, it is often the main chain that becomes sulfonated, however side chain sulfonation increase the chemical and mechanical properties of the polymer [76]. Hence, for potential application in ED with suitable properties, random and multiblock side-chain sulfonated polyether sulfones (sPES) was prepared by condensation polymerization using 2,5-diphenylhydroquinone, 4,4'-Difluorodiphenyl sulfone, and 4,4'-dihydroxydiphenyl sulfone as monomer [62].

Poly(aryl ether ketone)

Poly (aryl ether ketone) has also been used as IEM matrix [67-70]. The modification of the polymer backbone can be carried out in the similar way used for PES polymer material. However, uncrosslinked sulfonated membranes show high swelling ratio which reduces mechanical properties and ion permselectivity, and thus prohibits them from applying in electromembrane processes, especially at higher temperature. For these reasons, these polymers are often blended with non-functional polymers or cross-linked by different means to enhance and modify the transport properties [69, 70].

Polyphenylene Oxides (PPO)

From engineering polymer poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), anion exchange membranes have been prepared either by chloroacetylation-quaternary amination or by bromination-amination process as shown in Figure 2 [71-73].

The new route for preparing AEMs as proposed in the Figure 2a shows several advantages over the traditional one (chloromethylation, followed by quaternization): (1) avoiding the use of chloromethyl methyl ether (CME), a carcinogen and is potentially...
harmful to human health, normally used in the conventional preparation procedure of AEMs, and the process can be easily controlled through the Friedel–Crafts reaction, which is a kind of simple and well-investigated reactions; (2) the used materials are conventional agents with low toxicity [71]. Via chloroacetylation, the membranes with high IEC can be obtained. Nevertheless, the physical stability of the resultant membranes still requires more improvement. This problem can be solved by the introduction of bromination substitutions (Figure 2b) which can occur on both aryl and benzyl positions. Now it can be easily aminated and can also be created cross-linking to some extend among the functional groups of the membranes [72, 73]. It is noted that this crosslinking can also be conducted after the formation of base membrane [10].

The cation exchange membrane can also be obtained with the same way: by bromination and sulfonation (Figure 2c) or directly by sulfonation [10, 74].

2.1.3. Charge Induced on the Film Membranes

The IEM can also be prepared by forming the non-ionogenic polymer films firstly, subsequently by the introduction of charged functional groups onto the formed polymer films either directly by grafting of a functional monomer or indirectly by grafting nonfunctional monomer followed by functionalization reaction.

Both porous and non-porous membranes can be used as the film substrates. Typical examples of grafting substrates include hydrocarbon polymer based films of polyethylene (PE), polypropylene (PP), polyalkene (polyalkene non-woven fabrics (PNF)), and fluorocarbon polymer based films of polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).

For the grafting agents, there are two major categories; (1) functional monomers such as acrylic acid, methacrylic acid that can be directly attached to the substrate as charged functional groups and (2) non-functional monomers such as styrene, glycidyl methacrylate (GMA, the ester of methacrylic acid and 2,3-epoxy-propanol that bears a reactive epoxy group) and vinylbenzyl chloride that can be further chemically modified into the ion-exchangeable.

Radiation-induced graft copolymerization is well known for its merits and potential to transform the chemical and the physical properties of pre-existing polymeric materials without altering their intrinsic properties. Using this method, cation exchange membrane for electrodialysis application was early prepared by grafting of methacrylic acid onto preformed polymer film PE [77]. Another type of membranes prepared by grafting of fluorinated monomers such as
methyl trifluoro-propronoate onto PTFE films was found to be promising for electrodialysis processes as the use of fluorinated monomer imparted more chemical stability to membranes [78].

Both anion and cation exchange membranes can be obtained from the same precursor prepared by the radiation-induced grafting of glycylid methacrylate (GMA), and subsequent chemical modification of poly(GMA) graft chains by different ways i.e. amination gives anion exchange, sulfonatin or phophonation gives cation exchange membranes [79, 80]. The anion exchange membranes can also be prepared by grafting of vinylbenzyl chloride onto fluorinated PVDF films followed by amination reaction to convert the functional groups to amine derivatives [81].

Into Nafion precursor, made by DuPont, usually charge induces through the hydrolysis of this resin with sulfuric acid and hydrogen peroxide to form a perfluorosulfonic polymer. It is a logical support for a thin carboxylic acid-form membrane onto Nafion to decrease water permeability because the sulfonic acid form of this membrane is highly permeable to water and ions. The carboxylate layer could be created by two ways: (1) cast or laminated onto a sulfonate layer (e.g., Nafion 90209) and (2) by modifying the surfaces of a sulfonate-form membrane. To create very thin, defect-free carboxylate layers on already thin starting films, surface modification is the better way [82]. The general surface modification reaction of Nafion has included four primary steps: reduction of sulfonyl fluoride to sulfinic acid, hydrolysis of residual sulfonyl fluoride to sulfonate, oxidation of sulfinic acid to carboxylic acid, and cleaning of the resultant ionomer.

2.2. Mixed Matrix Ion-Exchange Membrane

Actually it is difficult to acquire all the targeted properties in one IEM to satisfy the requirements of particular application. In fact, different applications usually require specific membrane properties. For electrodialysis, the ion-exchange membranes are expected to possess high permselectivity, excellent conductivity, and good chemical, thermal and mechanical stabilities. As most polymer based IEMs have some common drawbacks including insufficient mechanical, chemical and thermal stabilities, and poor fouling resistance, they are still insufficient for the ED process. The concept of combining two distinct materials forming a new composite that keeps desirable properties of both components is an alternative method for the development of new IEMs with excellent electrochemical properties and good mechanical stability. Table 2 provides examples of composite (or mixed matrix) ion-exchange membranes prepared from different routes and some of their properties for electrodialysis applications.

Inorganic-organic composite materials have gained increasing attention due to its specific properties

<table>
<thead>
<tr>
<th>Mixed matrix system</th>
<th>Preparation route</th>
<th>Property</th>
<th>Reference</th>
</tr>
</thead>
</table>
| PVA-Silica | Sol-gel | -Permselectivity of 0.91-0.94
- Conductivity up to 7.61 mS cm⁻¹ | [83, 84] |
| sPES-sulfonated silica | Blending | The composite showed good ionic conductivity, transport properties while maintain acceptable mechanical and thermal stability. | [85-88] |
| PVDF-Silica | Blending | -IEC of 0.8-2.0
- Porosity of 0.10-0.19
- Permselectivity up to 0.98 | [89-91] |
| PVC-Rasine | Blending | -IEC of 1.1-4.0
- Transport number up to 0.96
- Permselectivity up to 0.91 | [92-95] |
| PVC-SBR-Rasine | Blending | -Membrane resistance of 4.4-13.0 cm²
- Transport number up to 0.99
- Permselectivity of 0.67-0.99 | [96-101] |
| PES-Rasine | Blending | Membrane prepared by solvent evaporation method showed higher transport number, permselectivity, and relative transport number compared to gelation method. | [102] |
| HIPS-PANI | Blending | The ion percent extraction for mixed matrix membrane is similar to that observed for the commercial membrane. | [103-105] |
originated from the components in the composite. The organic counterpart of the composite membrane provides opportunities of chemical modifications, structure flexibility, and processibility on large scale. On the other hand, the main characters of the inorganic fillers in composite membranes are to retain water inside the membrane, to improve conductivity, while maintaining good chemical, mechanical and thermal stability.

Mixed matrix ion-exchange membrane can be made by several routes including sol–gel process, intercalation, blending, in situ polymerization, molecular self-assembling, but probably physical blending and sol–gel process are the most prominent technique as depicted in Figure 3 [11]. For the first approach, the resultant membranes normally show phase separation from aggregated fillers, causing mechanical instability of the composite membranes. On the other hand, sol–gel method offers better interconnection between two domains.

It is known that a big problem in development of composite materials is the distribution of inorganic nanoparticles in the organic matrix due to the aggregate tendency of the nanoparticles. However, by enhancing the interaction among them via covalent bond, hydrogen bond, and electrostatic interaction, this problem can be reduced. Frequently used strategies for enlightening the interaction between inorganic and organic matrix are; (1) functionalization of inorganic fillers or/and polymer matrix (2) introduction of the inorganic filler on the polymer chains. The functionalization of mesoporous SiO₂ using sulfonate groups is a good policy to enhance the distribution of the nanoparticles in the polymer matrix [85-88]. Moreover, the addition of functionalized mesoporous nanoparticles not only increases charged functional groups in the composites, but also improves the ionic transport properties due to their high surface area and well-accessible mesopores.

Mixed matrix ion-exchange membrane can also be made by mechanical incorporation of powered ion-exchange resin into sheets of rubber, PVC, acrylonitrile copolymers or some other extrudable or mouldable matrix. Such membranes can be prepared by different methods; (1) dry moulding of inert film forming polymers and ion-exchange particles and then milling the mould stock, (2) calendaring ion-exchange particles into an inert plastic film, and (3) resin particles can be dispersed in a solution containing a film forming binder and then the solvent is evaporated to give ion-exchange membrane. To increase mechanical stability, such composite membranes may also be reinforced with a chemically resistance fabric.

Recently, a two-step phase inversion membrane formation technique has been developed for the preparation of composite membrane which allows a good control of the membrane structure, porosity and electrochemical properties [86]. In this procedure polymer with ion exchange group firstly dissolved in a solvent. The polymer solution is then cast on glass
substrates with different solution thickness and then partially dried in a vacuum oven at 60°C with different aging times before precipitating in 60–70°C DI water. By tuning the aging time before precipitating the partly dried film in water bath, membrane porosities can be control via this new technique. Among the IEMs prepared by this method, membranes with interconnecting pore structure show good ionic conductivity but their transport number and selectivity are very poor. On the other hand, membranes with smaller pores and denser surface are more selective, but less conductive.

2.3. Bipolar membrane

A bipolar membrane (BPM) is a composite membrane consists of an anion-exchange layer and a cation-exchange layer and usually has a catalytic intermediate layer (InL) between the two ion exchange layers. Recently bipolar membrane has gained increasing attention as an efficient tool for the production of acids and bases from their corresponding salts by electrically enforced accelerated water dissociation. Actually, water dissociation takes place at the InL between ion exchange layers (CEL and AEL) of BPM and particularly depends on their properties.

However, a noble BPM should have high selectivity, water dissociation efficiency, acid and base stability over wide pH range, low salt diffusion, along with good thermal and mechanical stability. These desired properties can be obtained by suitable membrane forming materials, selection of InL and membrane casting methodology.

For preparing bipolar membranes with suitable properties, various methods has been initiated, such as laminating polymeric films with fixed charges of opposite polarity with heat and pressure or with an adhesive paste [106], preparing by casting a cation exchange polyelectrolyte solution onto an anion exchange membrane or vice-versa [107], or preparing from the same base membrane by simultaneous functionalizing at the two membrane sides [108] or selectively functionalizing on one side to give cation selectivity and on the other side to give anion selectivity [109], etc. Among these, the casting method is the most efficient one for the preparation of such membrane because it is simple, less costly and also allows a bipolar membrane with desired properties [110]. Using this method, novel bipolar membranes have been prepared by casting the sulfonated PPO solution on a series anion exchange membranes [111].

Actually, the function of the two ion exchange layers in a bipolar membrane is to selectively transport the water dissociation products, protons and hydroxyl ions, at the InL and block co-ions. However, water dissociation mainly depends on the charged groups and structure of InL region and thus usually is modified to enhance the bipolar membrane’s performance. As catalysts in the bipolar junction, immobile weak acids or bases with an equilibrium constant of the acid/base pair close to that of the water dissociation reaction (pKa = 7) could be used, such as amino groups, sulfonic acid groups, amide groups, hydroxyl groups, pyridine groups [112-116] as well as metal ion/metal ion complexes, such as Aluminum, Magnesium, Iron, Copper, etc. [116-120]. Also, metal ions are immobilized by placing their insoluble salts or low soluble (multivalent metal ion) hydroxides in the intermediate layer or using a soluble salt with a subsequent treatment [121].

Our research group has developed a series of bipolar membranes to demonstrate the catalytic activity of different macromolecules whose anion exchange layers were modified with a variety of (bio)-macromolecules beforehand. The list includes hydrophilic materials such as hyperbranched aliphatic polyesters of the Boltorn series, polyethylene glycol (PEG), polyvinyl alcohol (PVA), polycaptopheretic bovine serum albumin (BSA), and a dendrimer molecule polyamidoamine (PAMAM) which possesses higher amino groups [113, 122-125]. The catalysts can be immobilized before or after the film formation. There have been several techniques applied: spray or dip-coating, incorporating in the polymer material by even dispersion, by electrochemical methods after formation of the layers or by in situ polymerization, electrospray deposition, layer-by-layer (LBL) assembly of polyelectrolyte multilayers [126-130].

The LBL deposition of polyelectrolyte multilayers is an effective method to introduce molecularly thin catalyst groups at this interface of bipolar membranes [130]. By this method, the bipolar membranes are prepared by first modifying an AEM via successive dipping LBL assembly, then casting a thin highly charged intermediate layer followed by casting a CEM.

3. ELECTRODIALYSIS APPLICATIONS OF ION EXCHANGE MEMBRANES

Electrodialysis (ED) as a novel process has grown rapidly during last decades. At first the ED was mainly used for the separation and production processes
based on ion exchange membranes, which mainly includes conventional electrodialysis (CED), electro-electrodialysis (EED), bipolar membrane electrodialysis (BMED or EDBM) and electrodialysis deionization (EDI), etc. There are several comprehensive reviews which summarized ED utilization in organic acid productions [131], in environmental protection [132], for sustainable development [133], in separation process [134], in bioproducts transforming [135]. During last decades of development, ED has also been used for the energy reclamation from concentration gradient that called reverse electrodialysis (RED) [136-138]. However, the following will focus on the reclamation of useful resources such as nitrogen, phosphorus, precious metals and organic compounds from factory byproducts, wastewaters and brines, etc.

3.1. Recovery of N&P

Nitrogen and phosphorus are very important nutrients for the grown of crops which phosphate account for 2-4% of the dry weight of most cells. During the past decades, the demand for nitrogen and phosphorus increases rapidly for growing dairy- and meat-based diets. However, phosphorus has no substitute in food production and can only be extracted from phosphorous mining; in the same case, the production of ammonia requires nearly 1 m³ of natural gas per kg, moreover, commercial nitrogen fertilizer cost increase rapidly with increase of raw materials price. The excessively dissolved phosphorus and nitrogen nutrient would induce water deterioration and eutrophication as well as green-house gas emissions. It is important to consider any possible methods to recycle nitrogen and phosphorus from wastewater. Electrodialysis as an efficient separation process has been used for the extraction of nitrogen and phosphorus. Akyeva et al. [139], used electrodialysis to treat wastewater effluent from phosphoric acid extraction process. In this process, the phosphate extraction efficiency greatly depends on the applied current density. Particularly, low value of current density is suitable to block transition of triple-charged ions (PO₄³⁻) as a consequence; conventional electrodialysis is a potential process for phosphorus reusing. Zhang et al. [48], used electrodialysis configured with selective ion exchange membrane (SED) to recover phosphate from struvite reactor (see Figure 4). The selective membrane only allows the passive of mono-valent ions and blocks the multi-valent ions. To maintain the recovery rate of phosphate, the experiments were carried out at pH 9 which was adjusted by adding NaOH. Here phosphate was removed from feed compartment and recovered at product compartment simultaneously. For the aerobic effluent as the phosphate source, the current efficiency initially reached 72%, with a satisfying phosphate concentration (9 mmol L⁻¹). In the experiments with the anaerobic effluent, the phosphate flux was 16 mmol m⁻² h⁻¹. A cost evaluation shows that 1 kWh electricity can produce 60 g of phosphate by using a full scale stack, with a desalination rate of 95% on the feed wastewater. Finally, a struvite precipitation experiment shows that 93% of phosphate can be recovered. In our group [17], both conventional electrodialysis and bipolar membrane electrodialysis as well as their integration were used to recover phosphate from excess sludge. Firstly, simulated wastewater was treated with CED to recover phosphate. The concentration of phosphate was enriched to 1600 mg/L and then was pumped into EDBM process and transformed to valuable alkali solution and phosphate acid. Using continuous operation model, 95.8% recovery ratio could be achieved. However, at 50 mA/cm² operating current density, the net production of phosphorus acid was about 0.075 mol/L with a current efficiency about 75% and energy consumption rate about 29.3 kWh/(kg H₂PO₄). There also some other phosphorus recovery ED process, such as phosphoric acid from liquid crystal display (LCD) manufacturing process [33], the recovery of organic phosphorus composition from seawater [140], etc.

3.2. Recovery of Base

NaOH as its inherent strong absorption ability toward acid gas has been used to remove H₂S, CO₂, and CS₂ from the gaseous petroleum fractions and corrosive streams which are usually called sweetening. Simultaneously, in prewash section of a Merox tower, acidic gases (H₂S, CO₂) are eliminated by using caustic solution. This process can be represented by the following reactions:

\[
\text{H}_2\text{S} + \text{NaOH} \rightarrow \text{Na}_2\text{S} + 2\text{H}_2\text{O} \quad (1)
\]

\[
\text{CO}_2 + 2\text{NaOH} \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} \quad (2)
\]

The excess amount of NaOH is often used to achieve complete elimination of acidic gases and hence a large amount of NaOH is periodically discarded via spent caustic stream which would induce great environmental pollution. Keramati et al. [141], used electrodialysis to recover NaOH from waste stream of Merox tower (see Figure 5). Moreover, to improve NaOH recovery ratio and the applied current
efficiency, a cation exchange resin imported into dilute compartment to mitigate concentration polarization. The results indicate that a maximum NaOH recovery ratio of 75% was obtained for electrodialysis, and it is improved to 85% value by the introducing of cation exchange resin.

Besides, organic base, such as tetramethyl ammonium hydroxide (TMAH), which is often produced from photoresist developer wastewater, is another kind of hazardous material. It was recently recovered and recycled using electrodialysis in our group [15]. By this method, TMAH can be re-concentrated into the range of 7.45-8.33% mass concentration with a process cost about 36.4 $/t besides the recovered TMAH profits.

3.3. Recovery of Acid

Inorganic acids such as HCl, H$_2$SO$_4$, HNO$_3$, HF, HI are often produced in industries of electroplating, metallurgy, biological fermentation and rare earth industry, etc. If the concentration is high (>1 mol/L), the acid can be recovered by diffusion dialysis (DD). Due to the concentration limit of DD process, it is not proper for acid with low concentration and this waste with low acid concentration can be concentrated through...
electrodialysis and be recycled into the initial process. For examples, Kaoru et al. [142] used a three-compartment electrodialysar to treat the complex of hydriodic acid and iodine solution. In this process, I⁻ moves from feed compartment through anion exchange membrane toward cathode compartment and oxidized to I₂, at the same time, H⁺ moves toward anode compartment simultaneously where I₂ is reduced to I⁻. Hydriodic acid was also recovered by electro-electrodialysis (EED), a combination of electrolysis and electrodialysis with ion exchange membranes process [143]. Normally, EED mainly composes of two compartments: cathode compartment where reduction occur and anode compartment where oxidation occur, and one ion exchange membrane which was placed between two compartments allowing the passive of counter ions under the potential gradient. In this HI acid recovery process, the current efficiency is influenced by the temperature. At 293K, the current efficient was about 85.1%; on the other hand, at 333K it was about 82.5%. Hydrochloric acid is also a widely used inorganic acid in the field of hydrometallurgical, pharmaceutical, food industry. However, the effluent that contains hydrochloric acid must be treated as their potential threat to environment. There are some works focusing on hydrochloric acid recovery from wasters [144, 145]. Our group [20] used integrated diffusion dialysis (DD) and conventional electrodialysis (CED) to recover hydrochloric acid from simulated chemosynthesis aluminum foils wastewater. In this method, initially the simulated wastewater was imputed into a spiral wound diffusion dialyser for recovering hydrochloric acid. Then the recovered low concentrations hydrochloric acid was reconcentrated by a conventional electrodialysis stack with a common configuration. To understand the compatibility and operational uniformity between DD and ED dialyseate, flow rate and CED current were adjusted. The results indicate that high hydrochloric acid recovery rate of 74.9% was obtained with the energy consumption of 0.41 kW h and low aluminum leakage of 12.2%. There are some other ED based useful acid reclamation processes from pickling wastewater [146-148], recovery of nitric acid [36, 149], especially, the recovery of metallic ion from pickling or plating waster as an independent process will be summarized in a separate section hereafter.

Besides inorganic acids, organic acid recovery using electrodialysis has also been studied for a long time. Citric acid, an organic acid, has been widely used for food industry, chemical and textile industry, environmental protection, cosmetics industry and pharmaceutical industry, etc. It is often synthesized using fermentation method with a subsequent addition of sulphuric acid and lime to clarify fermentation broths [150]. Due to this case, ED based separation process has been used as an alternatively to the conventional, such as bipolar membrane electrodialysis [151-156]. A comprehensive review has summarized the application of electrodialysis to the production of organic acids in detail [131].

3.4. Recovery of Ionic Liquids (ILs)

Ionic liquids (ILs), novel solvents, exhibit excellent properties, such as non-volatility, non-flammability, high electric conductivity, excellent catalytic activities and good phase separation performance. By virtue of these particular properties, ILs have been used for the extraction of biomass. However, the regeneration of biomass from ILs often produces large amounts of dilute waste with ILs. The disposal of ILs dilute wastewater may cause environmental issues due to their slow degradation and toxicity. ILs always consist of salts containing various heterocyclic cations and anions or other complex anions which could dissociate freely in aqueous solution. ED is often used as an optional process for the recovery of ILs. For examples, Trinh et al. [26] used it to recover an ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) from a hydrolysis of lingocellulosic biomass. The results indicate that 64% ILs can be recovered with 63.5 % current efficiency. The similar recovery was also conducted by Lu et al. [157]. Wang et al. [54] used this process for the recovering of 1-hexyl-3-methylimidazolium chloride ([Hmim]Cl) and 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4). The results showed that the highest ILs reached to 85.2% and highest overall current efficiency reached to 80.9% with high specific energy consumption of 1350 g/kWh. Using this noble process, Haerens et al. [52] produced ILs of choline thiocyanate, choline acetate and choline dicyanamide from starting product choline chloride with a high current efficiency between 65% and 78%.

3.5. Recovery of Metals from Wastewater

In chemical engineering industries such as hydrometallurgical, machinery manufacturing, electroplating, electronic industry and instrument manufacturing, there often produces large quantity of waste containing metal ions of chromium (Cr), copper (Cu), nickel (Ni), cadmium (Cd), gold (Au), and zinc (Zn).
Chromium often exists as Cr (III) or Cr (VI) form in the wastewater produced from electroplating, leather tanning, cement and dyeing/fertilizer/photography industries. Chromium, especially hexavalent chromium Cr (VI) has been reported to be toxic to animals and humans and it is known as carcinogenic [158]. The direct discharge of the effluents would induce severe environmental problems. Gayathri et al. [159] used hybrid technology of ED and ion exchange to recover Cr (VI) from chrome plating wastewater. The efficiency of this method to remove and recover the chromium from the effluent was about 100% for the different modes of operation like 1) batch recirculation process; 2) batch recirculation process with continuous dipping; 3) continuous process. Chen et al. [45] used a two-stage ED (TSED) process for the recycling of Cr (VI) from electroplating wastewater (see Figure 6). In this process, the raw wastewater was concentrated by first stage ED at low pH condition. The concentrated stream was then adjusted to pH 8.5 followed by treating with second stage ED which configuring monovalent anion permeselective membrane and non-selective cation exchange membranes. The chromate in concentrated stream was concentrated up to 191% in the first stage and in the second stage; chloride was separated about 45% from CrO4²⁻. Nataraj et al. and Peng et al. [160, 161] also used ED to recover Cr (VI) from plating wastewaters. Cr (III) as another chromium in the environment is more stable and less toxic compare to Cr (VI). Lambert et al. [22, 35] used monovalent cation selective membrane for the selective recovery of Cr (III) from tanning process in the leather industry. The final results demonstrated that separation of trivalent chromium and sodium ion is possible.

To improve the corrosion resistance and provide decorative characteristics, electroplating and metal finishing processes often use several hazardous chemical and toxic compounds such as nickel. However, the effluent always contains nickel salts and organic additives that should be treated. ED as an excellent separation process has been used for the recovery of useful nickel from rinse water. For example, Benvenuti et al. [162] used ED to concentrate and extract nickel (Ni) and its salts from the bright nickel electroplating process. In this extraction process, the recovery rate of nickel reached to 90mA A⁻¹ h⁻¹ cm⁻² with an energy consumption of 0.7 kW h for 1 kg NiSO₄·H₂O. Li et al. [163] also used ED to separate nickel ions from pent electroless nickel plating bath. ED combined with ion exchange has also been used to recover nickel from dilute solution [51, 53, 164, 165]. A highest recovery rate of 99% (Ni) was obtained by the using Dowex 50WX-2 resin [51]. After the treatment, the concentration of nickel in the process solution decreases from approximately 5 ppm to less than the detection limit of the analysis (<20 ppb) [164]. Modified ED using special membranes such as liquid membrane and mono-valent selective membrane were also used for the selective recovery of nickel from electroplating industry [166, 167].

Besides chromium and nickel, lithium is a growing metal that is often used in production of glass and...
ceramic, air conditioning refrigeration systems, primary and secondary batteries, and nuclear energy production. Generally, lithium was extracted from lake brine or seawater instead of ore. Conventional extraction procedure of lithium requires high energy consumption and would induce severe environmental problem. ED is used as an optional process for the separation of lithium from lake brine, seawater and water. Recently, our group [19] used the integration of ED and bipolar membrane electrodialysis (BMED) for the production of LiOH from lake brine. In this process, the lake brine is treated with Na$_2$CO$_3$ to precipitate Ca and Mg ion followed by concentrating the effluent with low concentration lithium ion. The lithium ions are then extracted from concentrated brine by adding of Na$_2$CO$_3$ as Li$_2$CO$_3$ followed by treating the obtained Li$_2$CO$_3$ with BMED to produce LiOH (see Figure 7). The final results indicate that the concentration of lithium increased from 879 mg/L to 3157 and 3485 mg/L respectively, for two operating voltage of 10V and 15V, as well as a high purity of ca. 98% Li$_2$CO$_3$ powder was obtained by this process. Lithium, an alkali metal abundantly present in sea water, was also recovered by ED using liquid membranes [41-43, 168]. This modified ED involves the using of ionic-liquid-impregnated organic membrane (IL-i-OM) through which only the Li ions in seawater can permeate through.

There are several other ED based separation processes to recover environment pollutants but useful metals from wasters, such as the isolation and reclamation of Cu(II) [169-173], Pb(II) [174-176], Zn [177], Mn [57, 178], Na, K-Salt [14, 23, 37, 39, 44, 179], Au (III) [56], dyes and mineral salts [180], etc. They will not be discussed in detail here due to the page limits.

4. SUMMARY AND PERSPECTIVE

This contribution summarizes up-to-date synthetic tactics for the preparation of ion-exchange materials and their applications for electrodialysis related processes from the literature. We feel that most of the upcoming progresses in the area will come from those developers or users that will look at these technologies as tools to cope with their specific treatment requirements. But it should be given emphasis that preparation of ion exchange membranes or materials is the most crucial. IEMs with high performance are important polymeric materials and used in ED for different applications. The main driving force for the development of new IEMs with improved properties is to make those applications more effective.

Actually, the performance of membranes is determined by its properties and separation abilities. IEMs can be designed and prepared by a number of tactics varying from basic polymer reactions to innovative nanotechnology via molecular design and architectural tailoring of composite materials.

![Figure 7: Schematic diagrams and configuration of CED and EEDBM stack for producing lithium hydroxides [19]. Copyright (2014), Reprinted with permission from American Chemical Society.](image-url)
Besides the preparation of IEMs, the technical and commercial relevance of the IEM-based ED processes should also be taken into account. As evaluated by Strathmann [181], some of the ED applications can be considered as state-of-the-art technology, such as the applications using conventional electrodialysis, production of pure water using continuous electrodialysis, and some specific applications using bipolar membranes, such as production of organic acid from the fermentation broth or recovery of HF and HNO₃ from a waste stream generated by neutralization of a steel pickling bath. In some applications, ED processes provide higher quality products or are more environmentally friendly and will therefore be used in spite of some drawback such as operation cost. Also, increasing costs of raw materials and environmental awareness have expanded the application of ED.

However, the targeted properties of IEMs have to be set up to fulfill the membrane requirements for specific applications, and appropriate synthesis routes for IEMs towards the goals should be specified accordingly. Besides the material development, the ED system design and their operation optimization should also be further developed. In the ED based application of the IEMs, new systems to bring down the energy consumption and production cost require more progress.

ACKNOWLEDGEMENTS

The financial support from the National Natural Science Foundation of China (nos.51273185, 21476220), National High Technology Research and Development Program 863 (2012AA03A608), and Chinese government (through Chinese Government Scholarship – University Postgraduate Program (CGS-UPP)) is gratefully acknowledged.

REFERENCES

For Author's Personal Use

[99] Hosseini, S.M., Madaeni, S.S., Heidari, A.R., Moghadassi, A.R. Preparation and characterization of polyvinyl chloride/styrene butadiene rubber blend heterogeneous cation exchange...
http://dx.doi.org/10.1016/j.desal.2011.06.022

http://dx.doi.org/10.1016/j.desal.2011.08.057

http://dx.doi.org/10.1002/app.22808

http://dx.doi.org/10.1021/jf1004039

http://dx.doi.org/10.1016/j.memsci.2008.12.065

http://dx.doi.org/10.1016/j.jcis.2007.11.054

http://dx.doi.org/10.1016/j.memsci.2013.04.045

http://dx.doi.org/10.1002/app.1260

http://dx.doi.org/10.1002/app.12776

http://dx.doi.org/10.1016/j.memsci.2008.03.016

http://dx.doi.org/10.1002/app.2014

http://dx.doi.org/10.1016/j.memsci.2004.03.028

http://dx.doi.org/10.1002/app.28276

http://dx.doi.org/10.1016/j.memsci.2011.02.009

http://dx.doi.org/10.1016/j.desal.2012.04.006

http://dx.doi.org/10.1016/j.memsci.2006.06.029

http://dx.doi.org/10.1016/j.memsci.2008.05.027

http://dx.doi.org/10.1016/j.memsci.2010.01.013

http://dx.doi.org/10.1016/j.memsci.2010.09.016

http://dx.doi.org/10.1016/j.jcis.2005.11.049

http://dx.doi.org/10.1016/S0011-9164(03)00307-2

http://dx.doi.org/10.1016/j.jcis.2004.11.050

http://dx.doi.org/10.1016/j.jcis.2004.05.006

http://dx.doi.org/10.1016/j.memsci.2004.05.002

http://dx.doi.org/10.1016/0011-9164(88)80061-4

http://dx.doi.org/10.1016/j.memsci.2010.09.034
For Author's Personal Use

[166] De Ketelaere RF, Linden JV. Selective recovery of nickel from industrial effluents by supported liquid membranes (SLM) and modified electrodialysis (MED) 1999.

